Nanoparticle collection using thermoplasmonics

Masahiro Motosuke¹

¹Tokyo University of Science, Tokyo, 125-8585, Japan

†Email address for correspondence: mot@rs.tus.ac.jp

Abstract

Manipulation and control of suspended nanoparticles in a liquid is a challenging issue because of the strong diffusion nature of nanoparticles. The ability to manipulate nanoparticles ondemand is crucial for applications such as ultrasensitive sensing, early diagnostics, and environmental monitoring. An appropriate of spatial field gradients, such as light, temperature or electric field can be a benefitial tool to control the nanoparticles. Here, our recent research utilysing thermoplasmonics for nanoparticle collection is introduced. Plasmonic nanoparticles or nanosctructures as a souce of heat remotely controlled by light irradiation. Then this heat generation induces several driving forces for suspended nanoparcles; radiation pressure, thermophoresis, and interfacial flow around microbubble. Different particle accumulation patterns can be obtained depending on the driving principle. We experimentally analyses these accumulation patterns and its dynamics by using fluorescent latex nanoparticles. Also, DNAs or proteins can be collected using the same phenomena.

Keywords: Nanoparticle, Plasmonics, Photothermal conversion, Interfacial flow

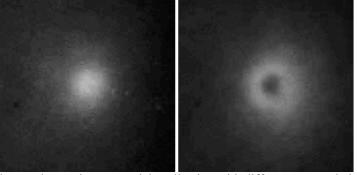


Figure 1. Thermoplasmonic nanoparticle collection with different accumulation patterns based on radiation pressure (left) and thermophoresis (right).

Acknowledgments

We sincerely thank the Asian Fluid Mechanics Committee (AFMC) for their exceptional efforts in organizing the 18th Asian Congress of Fluid Mechanics (ACFM) scheduled to be held in Seoul, Korea, from September 10 to 13, 2025. Support from grant ### is gratefully acknowledged.